
In the quantum world, atoms and their electrons can
form many different states of matter, such as crystalline solids,
magnets, and superconductors. Those different states can 
be classified by the symmetries they spontaneously break—
translational, rotational, and gauge symmetries, respectively,
for the examples above. Before 1980 all states of matter in 
condensed-matter systems could be classified by the principle 
of broken symmetry. The quantum Hall (QH) state, discovered
in 1980,1 provided the first example of a quantum state that has
no spontaneously broken symmetry. Its behavior depends only
on its topology and not on its specific geometry; it was topo-
logically distinct from all previously known states of matter.

Recently, a new class of topological states has emerged,
called quantum spin Hall (QSH) states or topological insula-
tors (see PHYSICS TODAY, January 2008, page 19). Topologically
distinct from all other known states of matter, including QH
states, QSH states have been theoretically predicted and ex-
perimentally observed in mercury telluride quantum wells,2,3

in bismuth antimony alloys,4,5 and in Bi2Se3 and Bi2Te3 bulk

crystals.6–8 QSH systems are insulating in the bulk—they have
an energy gap separating the valence and conduction bands—
but on the boundary they have gapless edge or surface states
that are topologically protected and immune to impurities or
geometric perturbations.9–12 Inside such a topological insula-
tor, Maxwell’s laws of electromagnetism are dramatically al-
tered by an additional topological term with a precisely quan-
tized coefficient,12 which gives rise to remarkable physical
effects. Whereas the QSH state shares many similarities with
the QH state, it differs in important ways. In particular, QH
states require an external magnetic field, which breaks time-
reversal (TR) symmetry; QSH states, in contrast, are TR invari-
ant and do not require an applied field.

From quantum Hall to quantum spin Hall 
In a one-dimensional world, there are two basic motions: for-
ward and backward. Random scattering can cause them to
mix, which leads to resistance. Just as we have learned from
basic traffic control, it would be much better if we could spa-

tially separate the counterflow directions
into two separate lanes, so that random
collisions could be easily avoided. That
simple traffic control mechanism turns
out to be the essence of the QH effect.1

The QH effect occurs when a strong
magnetic field is applied to a 2D gas of
electrons in a semiconductor. At low tem-
perature and high magnetic field, elec-
trons travel only along the edge of the
semiconductor, and the two counterflows
of electrons are spatially separated into
different “lanes” located at the sample’s
top and bottom edges. Compared with a
1D system with electrons propagating in
both directions, the top edge of a QH bar
contains only half the degrees of freedom.
That unique spatial separation is illus-
trated in  figure 1a by the symbolic equa-
tion “2 = 1 [forward mover] + 1 [backward
mover]” and is the key reason why the
QH effect is topologically robust. When
an edge-state electron encounters an im-
purity, it simply takes a detour and still
keeps going in the same direction 
(figure 1), as there is no way for it to turn
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Figure 1. Spatial separation is at the heart of both the quantum Hall (QH) and
the quantum spin Hall (QSH) effects. (a) A spinless one-dimensional system has
both a forward and a backward mover. Those two basic degrees of freedom are
spatially separated in a QH bar, as illustrated by the symbolic equation
“2 = 1 + 1.”  The upper edge contains only a forward mover and the lower edge
has only a backward mover. The states are robust: They will go around an impu-
rity without scattering. (b) A spinful 1D system has four basic channels, which
are spatially separated in a QSH bar: The upper edge contains a forward mover
with up spin and a backward mover with down spin, and conversely for the
lower edge. That separation is illustrated by the symbolic equation “4 = 2 + 2.”



back. Such a dissipationless transport mechanism could be
extremely useful for semiconductor devices. Unfortunately,
the requirement of a large magnetic field severely limits the
application potential of the QH effect.

Can we get rid of the magnetic field and still separate the
traffic lanes for the electrons? In a real 1D system, forward-
and backward-moving channels for both spin-up and spin-
down electrons give rise to four channels, as shown in
 figure 1b. The traffic lanes for the electrons can be split in a
TR-invariant fashion, without any magnetic field, as illus-
trated in the figure by the symbolic equation “4 = 2 + 2.” We
can leave the spin-up forward mover and the spin-down
backward mover on the top edge and move the other two
channels to the bottom edge. A system with such edge states
is said to be in a QSH state, because it has a net transport of
spin forward along the top edge and backward along the bot-
tom edge, just like the separated transport of charge in the
QH state. Charles Kane and Eugene Mele from the University
of Pennsylvania,9 and Andrei Bernevig and one of us
(Zhang)10 from Stanford University, independently proposed
in 2005 and 2006 that such a separation, and thus the QSH
state, can in principle be realized in certain theoretical models
with spin–orbit coupling. (The fractional QSH state was also
predicted,10 though it has yet to be experimentally observed.)

Although a QSH edge consists of both backward and for-
ward movers, backscattering by nonmagnetic impurities is
forbidden. To understand that effect, we start with an anal-
ogy from daily life. Most eyeglasses and camera lenses have
a so-called antireflection coating. As shown in  figure 2a, re-
flected light from the top and the bottom surfaces interfere
with each other destructively, leading to zero net reflection
and thus perfect transmission. However, such an effect is not
robust, as it depends on the matching between the optical
wavelength and the thickness of the coating.

Just like the reflection of a photon by a surface, an elec-
tron can be reflected by an impurity, and different reflection
paths also interfere with each other. As shown in  figure 2b,
an electron in a QSH edge state can take either a clockwise
or a counterclockwise turn around the impurity, and during
that turn the spin rotates by an angle of π or −π to the oppo-
site direction. Consequently, the two paths, related by TR
symmetry, differ by a full π − (−π) = 2π rotation of the elec-
tron spin. A profound and yet deeply mysterious principle of
quantum mechanics states that the wavefunction of a spin-1⁄2
particle obtains a negative sign upon a full 2π rotation. Thus
the two backscattering paths always interfere destructively,
which leads to perfect transmission. If the impurity carries a

magnetic moment, the TR symmetry is broken and the two
reflected waves no longer interfere destructively. In that
sense the robustness of the QSH edge state is protected by
the TR symmetry.

The physical picture above applies only to the case of sin-
gle pairs of QSH edge states. If there are two forward movers
and two backward movers in the system—as, for example,
the unseparated 1D system shown in  figure 1b—then an elec-
tron can be scattered from a forward- to a backward-moving
channel without reversing its spin and without the perfect
destructive interference, and thus there is dissipation. Con-
sequently, for the QSH state to be robust, the edge states must
consist of an odd number of forward movers and an odd
number of backward movers. That even–odd effect, charac-
terized by a so-called Z2 topological quantum number, is at
the heart of the QSH state9,13 and is why a QSH insulator is
also synonymously referred to as a topological insulator.

Two-dimensional topological insulators
Looking at  figure 1b, we see that the QSH effect requires the
counterpropagation of opposite spin states. Such a coupling
between the spin and the orbital motion is a relativistic effect
most pronounced in heavy elements. Although all materials
have spin–orbit coupling, only a few of them turn out to be
topological insulators. In 2006 Bernevig, Taylor Hughes, and
Zhang proposed a general mechanism for finding topological
insulators2 and predicted in particular that mercury telluride
quantum wells—nanoscopic layers sandwiched between
other materials—are topological insulators beyond a critical
thickness dc. The general mechanism is band inversion, in
which the usual ordering of the conduction band and valence
band is inverted by spin–orbit coupling.2,4

In most common semiconductors, the conduction band
is formed from electrons in s orbitals and the valence band is
formed from electrons in p orbitals. In certain heavy elements
such as Hg and Te, however, the spin–orbit coupling is so
large that the p- orbital band is pushed above the s- orbital
band—that is, the bands are inverted. Mercury telluride
quantum wells can be prepared by sandwiching the material
between cadmium telluride, which has a similar lattice con-
stant but much weaker spin–orbit coupling. Therefore, in-
creasing the thickness d of the HgTe layer increases the
strength of the spin–orbit coupling for the entire quantum
well. For a thin quantum well, as shown in the left column of
figure 3a, the CdTe has the dominant effect and the bands
have a normal ordering: The s-like conduction subband E1 is
located above the p-like valence subband H1. In a thick quan-

a b
Figure 2. (a) On a lens with antireflection
coating, light waves reflected by the top
(blue line) and the bottom (red line) sur-
faces interfere destructively, which leads to
suppressed reflection. (b) A quantum spin
Hall edge state can be scattered in two di-
rections by a nonmagnetic impurity. Going
clockwise along the blue curve, the spin ro-
tates by π ; counterclockwise along the red
curve, by −π. A quantum mechanical phase
factor of −1 associated with that difference
of 2π leads to destructive interference of
the two paths—the backscattering of elec-
trons is suppressed in a way similar to that
of photons off the antireflection coating.
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tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 μm (red) to 1.0 μm (blue), proof that only the edges are conducting.



have a single Dirac cone on the surface. The spin of the sur-
face state lies in the surface plane and is always perpendicu-
lar to the momentum, as shown in  figure 4b.

Known to be excellent thermoelectric materials, Bi2Te3
and Bi2Se3 have been investigated independently, particularly
at Princeton, where Hasan’s group observed in ARPES exper-
iments the single Dirac-cone surface state of Bi2Se3 samples
prepared by Robert Cava and coworkers.7 Furthermore, the
group’s spin-resolved measurements showed that the elec-
tron spin indeed lies in the plane of the surface and is always
perpendicular to the momentum, in agreement with theory.
However, the experiments also observed bulk carriers co -
existing with the topological surface states. A pure topological-
insulator phase without bulk carriers was first observed in
Bi2Te3 by Yulin Chen and Zhi-xun Shen’s group at Stanford
in ARPES experiments on material prepared by Ian Fisher
and colleagues.8 As shown in  figure 4c, the observed surface
states indeed disperse linearly, crossing at the point with zero

momentum. By mapping all of momentum space, the ARPES
experiments show convincingly that the surface states of
Bi2Te3 and Bi2Se3 consist of a single Dirac cone. Such a state is
impossible to construct in a purely 2D system. For example,
a 2D graphene sheet has four Dirac cones (see the article by
Andrey Geim and Allan MacDonald, PHYSICS TODAY, August
2007, page 35). The 2D HgTe quantum well at the crossover
point d = dc has two Dirac cones. In a sense, the cones are spa-
tially separated, with one placed on the top surface and the
other on the bottom surface, similar to spatial decomposition
illustrated in  figure 1 for the 1D surfaces of a 2D system. (Par-
ticle physicists have been using similar ideas—treating a 3D
lattice as the surface of a 4D lattice—in numerical simulation
of fermions so as to avoid getting an unwanted doubling of
neutrinos.) As we discuss below, a single Dirac cone on the
surface directly leads to novel topological properties.11,12

Topological classification of insulators
Mathematicians group geometric objects into broad topolog-
ical classes. Objects with different shapes, such as a donut
and a coffee cup, can be smoothly deformed into each other
and can therefore be grouped into the same topological class.
Mathematicians also developed the concept of a topological
invariant that uniquely defines the topological class. Topo-
logical materials in general, and topological insulators in par-
ticular, can be defined by physically measurable topological
invariants in topological field theories.

We can first divide insulators into two broad classes, ac-
cording to the presence or absence of TR symmetry. The QH
state is a topological insulator state that breaks TR symmetry.
David Thouless and coworkers showed that the physically
measured integer QH conductance is given by a topological
invariant called the first Chern number (see the article by
Joseph Avron, Daniel Osadchy, and Ruedi Seiler, PHYSICS
TODAY, August 2003, page 38). For a generally interacting sys-
tem, the topological properties of the QH state can be de-
scribed by an effective topological field theory based on the
Chern–Simons theory.14 Although Duncan Haldane con-
structed a model of the QH effect without the external mag-
netic field, that state still breaks TR symmetry.

For a long time it was widely believed that both TR sym-
metry breaking and two-dimensionality are necessary for an
insulator to be topological, but in 2001 the first model of a
TR-invariant topological insulator was introduced.15 That
model was originally defined in 4D, but TR-invariant topo-
logical insulators in 3D and 2D can be obtained through a
simple dimension-reduction procedure.12 Shuichi Murakami,
Naoto Nagaosa, and Zhang, and in parallel MacDonald and
colleagues at the University of Texas in Austin, developed the
theory of the intrinsic spin Hall effect in doped semiconduc-
tors and identified spin–orbit coupling as the crucial ingre-
dient; later, Murakami, Nagaosa, and Zhang extended the
theory to TR-invariant insulators. Kane and Mele first intro-
duced the topological band theory of TR-invariant QSH in-
sulators in 2D and showed that they fall into two distinct
topological classes, generally referred to as the Z2 classifica-
tion.9 That beautiful topological band theory was soon gen-
eralized to three dimensions.11 The two of us and our col-
leagues have developed a unifying topological field theory
that defines the general concept of a topological insulator in
terms of a physically measurable topological field theory.12

We now have two precise definitions of TR-invariant
topological insulators, one in terms of noninteracting topo-
logical band theory11 and one in terms of topological field the-
ory.12 If we approximate an insulator with noninteracting
electrons filling a certain number of bands, the topological
band theory can evaluate an explicit topological invariant

The essence of the quantum spin Hall effect in real materials can
be captured in explicit models that are particularly simple to
solve. The two-dimensional topological insulator mercury tel-
luride can be described by an effective Hamiltonian that is essen-
tially a Taylor expansion in the wave vector k of the interactions
between the lowest conduction band and the highest valence
band:2

where the upper 2 × 2 block describes spin-up electrons in the s-
like E1 conduction and the p-like H1 valence bands, and the
lower block describes the spin-down electrons in those bands.
The term ϵ(k)1 is an unimportant bending of all the bands (1 is
the identity matrix). The energy gap between the bands is 2M,
and B, typically negative, describes the curvature of the bands; A
incorporates interband coupling to lowest order. For M/B < 0, the
eigenstates of the model describe a trivial insulator. But for thick
quantum wells, the bands are inverted, M becomes negative,
and the solution yields the edge states of a quantum spin Hall
insulator. Another model9 for the 2D topological insulator with a
honeycomb lattice can also be simply solved to gain explicit
understanding.

The 3D topological insulator in the Bi2Te3 family can be
described by a similar model:6

in the basis of the Bi and Te bonding and antibonding pz orbitals
with both spins. The curvature parameters B1 and B2 have the
same sign. As in the 2D model, the solution for M/B1 < 0
describes a trivial insulator, but for M/B1 > 0, the bands are in -
verted and the system is a topological insulator.

Models of topological insulators
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that can give only binary values of 0 or 1: a Z2 classification
that defines trivial and nontrivial insulators. For materials
with inversion symmetry, a powerful algorithm developed
by Fu and Kane4 can be easily integrated into electronic struc-
ture calculations to numerically evaluate the topological
band invariant. However, since all insulators in nature are
necessarily interacting, it is important to have a general def-
inition of topological insulators that is valid for interacting
systems and is experimentally measurable. Both problems
were solved with the topological field theory,12 which can be
generally defined for all insulators, with or without inter -
actions. In the noninteracting case, both definitions agree.
Surprisingly, the topological field theory can be explained 
in terms of elementary concepts in undergraduate-level 
electromagnetism.

Inside an insulator, the electric field E and the magnetic
field B are both well defined. In a Lagrangian-based field the-
ory, the insulator’s electromagnetic response can be described
by the effective action S0 = 1/8π ∫d3xdt(ϵE2 − 1/μ B2), with ϵ the
electric permittivity and μ the magnetic permeability, from
which Maxwell’s equations can be derived. The integrand de-
pends on geometry, though, so it is not topological. To see that
dependence, one can write the action in terms of Fμν, the 4D
electromagnetic field tensor: S0 = 1/16π ∫d3xdtFμνFμν. The im-
plied summation over the repeated indices μ and ν depends
on the metric tensor—that is, on geometry. (Indeed, it is that
dependence that leads to the gravitational lensing of light.)

There is, however, another possible term in the action of
the electromagnetic field:

where α = e2/ħc ≈ 1/137 is the fine-structure constant, θ is a pa-
rameter, and ϵμνρτ is the fully asymmetric 4D Levi-Civita ten-
sor. Unlike the Maxwell action, Sθ is a topological term—it
depends only on the topology of the underlying space, not
on the geometry. Written using the field tensor, the term is 
independent of the metric.

Since the E field is invariant under TR, whereas the B
field changes sign, Sθ naively breaks TR symmetry. For a pe-
riodic system, however, there are two values of θ, namely
θ = 0 or θ = π, that preserve the TR symmetry.12 One can easily
understand that conclusion by an analogy. If we have a 1D
ring with a magnetic flux inside, a general value of the flux
Φ would break the TR symmetry. However, for two special
values of the flux, Φ = 0 or Φ = hc/2e, an electron’s wavefunc-
tion changes its phase by 0 or π when the electron circles the
ring either clockwise or counterclockwise, and TR symmetry
is maintained.

If we integrate out all the microscopic fermionic degrees
of freedom to obtain the effective action Sθ, all nonmagnetic
insulators in the universe would fall into two distinct topo-
logical classes, described by effective topological field theories
with θ = 0 or with θ = π. Unlike ϵ and μ, the physically meas-
urable θ parameter is universally quantized, with the two pos-
sible values defining the topologically trivial and nontrivial
insulators, respectively—the Z2 classification again.

Such classification is valid for a periodic system. For a
real solid with a finite boundary, a topological insulator is in-
sulating only in the bulk; it has an odd number of gapless
Dirac cones on the surface that describe conducting surface
states. If we uniformly cover the surface with a thin ferro-
magnetic film, an insulating gap also opens up on the bound-
ary; the TR symmetry is preserved in the bulk but broken 
on the surface. The last identity of the equation above for 
Sθ shows that the bulk topological term is in fact a total 
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Figure 4. In three-dimensional topologi-
cal insulators, the linearly dispersing edge
states of figure 3b become surface states
described by a so-called Dirac cone.
(a) The crystal structure of the 3D topolog-
ical insulator Bi2Te3 consists of stacked
quasi-2D layers of Te-Bi-Te-Bi-Te. The ar-
rows indicate the lattice basis vectors. The
surface state is predicted to consist of a
single Dirac cone.6 (b) Angle-resolved 
photoemission spectroscopy maps the 
energy states in momentum space. Spin-
dependent ARPES of the related com-
pound Bi2Se3 reveals that the spins (red) of
the surface states lie in the surface plane
and are perpendicular to the momentum.7
(c) This ARPES plot of energy versus
wavenumber in Bi2Te3 shows the linearly
dispersing surface-state band (SSB) above
the bulk valence band (BVB). The dashed
white line indicates the Fermi level. The
blue lines meet at the tip of the Dirac
cone.8



derivative, expressible as a surface
term, given by the expression in
parenthesis. That surface term is the
same Chern–Simons term that de-
scribes the topological field theory of
the QH state. In the QH field theory,
the term’s coefficient specifies the
value of the Hall conductance.14 Here
the coefficient of θ = π translates into
a Hall conductance of 1⁄2 e2/h, half the
conductance of the first QH plateau.
That value is uniquely associated
with the single Dirac cone on the sur-
face of topological insulators. Any
random disorder can change a sys-
tem’s Hall conductance only by an
 integer multiple of e2/h, thus the 
half-QH conductance of 1⁄2 e2/h can
never be reduced to zero by disor-
der—the surface states are topologi-
cally robust. 

Outlook
The field of topological insulators is
growing rapidly, and many remark-
able experiments have been carried
out. In nonlocal transport measure-
ments in a series of HgTe devices, the Würzburg group con-
firmed that transport current is carried by the QSH edge
states. The topological insulators Bi2Te3 and Bi2Se3 fabricated
in nanoribbon form at Stanford and by molecular-beam epi-
taxy at Tsinghua University. Scanning tunneling  microscopy
experiments have been carried out at Princeton, Stanford,
and Tsinghua universities to probe the topological surface
states. Preliminary transport measurements indicate domi-
nant contributions from surface states.

Solving Maxwell’s equations with the topological term
included leads to predictions of novel physical properties
characterized by exotic excitations. The 2D QSH insulator is
predicted to have fractional charge at the edge and spin–
charge separation in the bulk. In introductory physics classes
we learned that a point charge above a metal or an insulator
can be viewed as inducing an image charge below the sur-
face. A point charge above the surface of a 3D topological in-
sulator is predicted to induce not only an image electric
charge but also an image magnetic monopole below the sur-
face,12 as shown in figure 5a. Such a composite object of elec-
tric and magnetic charges, called a dyon, would obey neither
Bose nor Fermi statistics but would behave like a so-called
anyon with any possible statistics. Dislocations inside a 3D
topological insulator contain electronic states that behave
similarly to QSH edge states.

Axions are weakly interacting particles postulated to
solve some puzzles in the standard model of particle
physics16 (see the article by Karl van Bibber and Leslie Rosen-
berg, PHYSICS TODAY, August 2006, page 30). Those elusive
particles are also predicted to exist inside topological mag-
netic insulators, systems for which the θ parameter above be-
comes dependent on position and time. Majorana fermions
are distinct from the familiar Dirac fermions: They are their
own antiparticles. There is still no conclusive evidence for
Majorana fermions in nature. But when a superconductor is
close to the surface of a topological insulator, Majorana fermi-
ons are predicted to occur inside vortices (see figure 5b).17

Besides teaching us about the quantum world, the exotic
particles in topological insulators could find novel uses. For
example, image monopoles could be used to write magnetic

memory by purely electric means, and the Majorana fermions
could be used for topological quantum computing.18

Albert Einstein insisted that all fundamental laws of
physics should be expressed in terms of geometry, and he ex-
emplified that ancient Greek ideal by formulating the theory
of gravity in terms of the geometrical curvature of space and
time. Physicists are now pursuing Einstein’s dream one step
further, exploring the fundamental laws expressed in terms
of topological field theory. The standard model of elementary
particles contains a topological term that is identical to the Sθ
term that defines topological insulators. Even if only a small
number of the predicted exotic particles are observed in topo-
logical insulators, our fundamental understanding of nature
would be greatly enhanced. Such tabletop experiments could
become a window into the standard model16 and help reveal
the alluring beauty and mysteries of our universe.
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Figure 5. Novel behavior is predicted for topological insulators. (a) When a topo-
logical insulator (TI, green) is coated by a thin ferromagnetic layer (gray), each
electron (red sphere) in the vicinity of the surface induces an image monopole
(blue sphere) right beneath it.12 When one electron winds around another (red 
circle), it will experience the magnetic flux (arrows in the blue dome) carried by
the image monopole of the other, so that the  electron– monopole composite,
called a dyon, obeys fractional statistics. (b) When a TI is coated by an s-wave
 superconductor (SC), the superconducting vortices are Majorana fermions—they
are their own antiparticles. Exchanging or braiding Majorana vortices, as sketched
here, leads to non-abelian statistics.17 Such behavior could form the basis for topo-
logical quantum computing. 


